Author:
Eberhard Sean,Jezernik Urban
Abstract
AbstractLet $$G = {\text {SCl}}_n(q)$$
G
=
SCl
n
(
q
)
be a quasisimple classical group with n large, and let $$x_1, \ldots , x_k \in G$$
x
1
,
…
,
x
k
∈
G
be random, where $$k \ge q^C$$
k
≥
q
C
. We show that the diameter of the resulting Cayley graph is bounded by $$q^2 n^{O(1)}$$
q
2
n
O
(
1
)
with probability $$1 - o(1)$$
1
-
o
(
1
)
. In the particular case $$G = {\text {SL}}_n(p)$$
G
=
SL
n
(
p
)
with p a prime of bounded size, we show that the same holds for $$k = 3$$
k
=
3
.
Funder
ELKH Alfréd Rényi Institute of Mathematics
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. Alon, N., Roichman, Y.: Random Cayley graphs and expanders. Random Struct. Algorithms 5(2), 271–284 (1994)
2. Aschbacher, M.: Finite Group Theory, vol. 10 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition (2000)
3. Babai, L., Beals, R., Seress, Á: On the diameter of the symmetric group: polynomial bounds. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1108–1112. ACM, New York (2004)
4. Breuillard, E., Green, B., Guralnick, R., Tao, T.: Expansion in finite simple groups of Lie type. J. Eur. Math. Soc. 17(6), 1367–1434 (2015)
5. Breuillard, E., Green, B., Tao, T.: Approximate subgroups of linear groups. Geom. Funct. Anal. 21(4), 774–819 (2011)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献