Regionalization of hydroclimate variables in the contiguous United States

Author:

Carbone Gregory J.ORCID,Gao PengORCID,Lu JunyuORCID

Abstract

AbstractWe apply a hierarchical clustering algorithm to the Parameter-elevation Relationships on Independent Slopes Model (PRISM) database. The method employs linkage clustering while forcing spatial contiguity. We apply it to the lower-48 United States, deriving regions that are based on temperature and precipitation averages and anomalies, as well as statistical parameters underlying several drought and intense precipitation measures. Resulting regions make intuitive sense from the perspective of driving influences on temperature and precipitation averages and anomalies, and are compatible with results from another empirically derived clustering scheme. Regions selected for individual variables show high similarity across different time frames. There is slightly less similarity when comparing regions created for different monthly or daily hydroclimate variables, and relatively low similarity between monthly vs. daily measures. It is unlikely that any one regionalization solution could summarize hydroclimate extremes given the wide range of variables used to describe them, but geographically sensitive datasets like PRISM and flexible algorithms provide useful methods for regionalization that can aid in drought monitoring and forecasting, and with impacts and planning associated with heavy precipitation.

Funder

climate program office

University of South Carolina

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3