Carpathian Basin climate according to Köppen and a clothing resistance scheme

Author:

Ács FerencORCID,Zsákai AnnamáriaORCID,Kristóf ErzsébetORCID,Szabó Amanda ImolaORCID,Breuer HajnalkaORCID

Abstract

AbstractThe Carpathian Basin climate in the time period 1971–2000 is analyzed in terms of the results obtained by the Köppen method and a clothing resistance scheme. A clothing resistance scheme is based on human body energy balance considerations taking into account human interperson variations as simply as possible. Interperson variations are considered by estimating human body somatotypes using the Heath-Carter somatotype classification method. Non-sweating, walking humans in outdoor conditions are treated. Environmental and human data are taken from the CarpatClim dataset and a Hungarian human dataset, respectively. Though the biophysical bases of the methods are completely different, the spatial structure of thermal climates expressed in terms of Köppen climate types and the clothing resistance parameter rcl are basically similar. A clothing resistance scheme creates more information than the Köppen method not only in mountain, plateau areas but also in lowlands. It is shown that more human thermal climate categories can refer to one Köppen climate formula irrespective of which Köppen formulae are considered. The magnitude and area heterogeneity of rcl is strongly sensitive to human somatotype changes. A clothing resistance scheme cannot be used in classroom applications; it needs to be drastically simplified while maintaining its sensitivity to somatotype changes in order to be competitive with the Köppen method.

Funder

Eötvös Loránd University

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3