Application of machine learning for solar radiation modeling
Author:
Funder
Ministry of Science Research and Technology
Publisher
Springer Science and Business Media LLC
Subject
Atmospheric Science
Link
http://link.springer.com/content/pdf/10.1007/s00704-020-03484-x.pdf
Reference72 articles.
1. Alizamir M, Kim S, Kisi O, Zounemat-Kermani M (2020) A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: case studies of the USA and Turkey regions. Energy 197:117239
2. Amini S, Taki M, Rohani A (2020) Applied improved RBF neural network model for predicting the broiler output energies. Appl Soft Comp J 87:106006
3. Arabloo M, Ziaee H, Lee M, Bahadori A (2015) Modeling of the properties of brines using least squares support vector machine (LS-SVM) computational strategy. J Taiwan Inst Chem Eng 50:123–130
4. Behrang M, Assareh E, Ghanbarzadeh A, Noghrehabadi A (2010) The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Sol Energy 84:1468–1480
5. Belmahdi B, Louzazni M, Bouardi AE (2020) One month-ahead forecasting of mean daily global solar radiation using time series models. Optik 219:165207
Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Artificial Neural Network-Based Real-Time Power Management for a Hybrid Renewable Source Applied for a Water Desalination System;Electronics;2024-06-26
2. Unlocking renewable energy potential: Harnessing machine learning and intelligent algorithms;International Journal of Renewable Energy Development;2024-06-07
3. Solar radiation estimation using ANFIS model: evaluation of membership function types and data selection;International Journal of Environmental Science and Technology;2024-04-04
4. Prediction of solar irradiance with machine learning methods using satellite data;International Journal of Green Energy;2024-02
5. Precise derivations of radiative properties of porous media using renewal theory;Journal of Quantitative Spectroscopy and Radiative Transfer;2023-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3