Urine albumin-to-creatinine ratio diurnal variation rate predicts outcomes in idiopathic membranous nephropathy

Author:

Chen Xiaoqing,Zhang Yong,Yan Liqun,Xie Yangbin,Li Shujing,Zhuang Yongze,Wang Liping

Abstract

Abstract Background Idiopathic membranous nephropathy (IMN) is a leading cause of end-stage renal disease (ESRD). The purpose of this study was to evaluate whether urinary albumin-to-creatinine ratio (UACR) diurnal variation rate calculated by spot urinary protein test predicts 1-year nephrotic outcomes as a biomarker of proteinuria severity in patients with IMN. Methods Patients’ baseline demographics, blood and urinary biomarkers, and clinical and pathological characteristics were collected retrospectively. Urine samples were collected at 7:00 (before breakfast) and 19:00 (after dinner) to calculate the UACR diurnal variation rate. A prediction model for no remission (NR) was developed statistically based on differences between prognosis groups. Receiver operating characteristic curve (ROC) analysis was performed to evaluate prediction abilities and determine optimal cut-off points of the model and UACR diurnal variation rate alone. Results The formula for calculating the probability of NR was exp(L)/(1 + exp(L)), where the linear predictor L =  – 22.038 + 0.134 × Age (years) + 0.457 × 24-h urinary protein + 0.511 × blood urea nitrogen (BUN) + 0.014 × serum uric acid (SUA) + 2.411 if glomerular sclerosis + 0.816 × fasting blood glucose (FBG)-0.039 × UACR diurnal variation rate (%). Optimal cut-off points for NR prediction by the final model and UACR diurnal variation rate alone were 0.331 and 58.5%, respectively. Sensitivity and specificity were 0.889 and 0.859 for the final model, and 0.926 and 0.676 for UACR diurnal variation rate alone. Conclusion UACR diurnal variation using spot urinary protein is a simpler way to predict nephrotic outcomes and is a highly sensitive screening tool for identifying patients who should undergo further comprehensive risk assessment.

Funder

the National Natural Science Foundation-funded Project, China

the Natural Science Foundation of Fujian Province, China

Fujian Clinical Medical Research Center for Immune Kidney Disease

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3