Detrital zircon ages from Archaean conglomerates in the Singhbhum Craton, eastern India: implications on economic Au-U potential

Author:

Frimmel Hartwig E.ORCID,Chakravarti Rajarshi,Basei Miguel A. S.

Abstract

Abstract New U–Pb age and Hf isotope data obtained on detrital zircon grains from Au- and U-bearing Archaean quartz-pebble conglomerates in the Singhbhum Craton, eastern India, specifically the Upper Iron Ore Group in the Badampahar Greenstone Belt and the Phuljhari Formation below the Dhanjori Group provide insights into the zircon provenance and maximum age of sediment deposition. The most concordant, least disturbed 207Pb/206Pb ages cover the entire range of known magmatic and higher grade metamorphic events in the craton from 3.48 to 3.06 Ga and show a broad maximum between 3.38 and 3.18 Ga. This overlap is also mimicked by Lu–Hf isotope analyses, which returned a wide range in εHf(t) values from + 6 to − 5, in agreement with the range known from zircon grains in igneous and metamorphic rocks in the Singhbhum Craton. A smaller but distinct age peak centred at 3.06 Ga corresponds to the age of the last major magmatic intrusive event, the emplacement of the Mayurbhanj Granite and associated gabbro, picrite and anorthosite. Thus, these intrusive rocks must form a basement rather than being intrusive into the studied conglomerates as previously interpreted. The corresponding detrital zircon grains all have a subchondritic Hf isotopic composition. The youngest reliable zircon ages of 3.03 Ga in the case of the basal Upper Iron Ore Group in the east of the craton and 3.00 Ga for the Phuljhari Formation set an upper limit on the age of conglomerate sedimentation. Previously published detrital zircon age data from similarly Au-bearing conglomerates in the Mahagiri Quartzite in the Upper Iron Ore Group in the south of the craton gave a somewhat younger maximum age of sedimentation of 2.91 Ga. There, the lower limit on sedimentation is given by an intrusive relationship with a c. 2.8 Ga granite. The time window thus defined for conglomerate deposition on the Singhbhum Craton is almost identical to the age span established for the, in places, Au- and U-rich conglomerates in the Kaapvaal Craton of South Africa: the 2.98–2.78 Ga Dominion Group and Witwatersrand Supergroup in South Africa. Since the recognition of first major concentration of gold on Earth’s surface by microbial activity having taken place at around 2.9 Ga, independent of the nature of the hinterland, the above similarity in age substantially increases the potential for discovering Witwatersrand-type gold and/or uranium deposits on the Singhbhum Craton. Further age constraints are needed there, however, to distinguish between supposedly less fertile (with respect to Au) > 2.9 Ga and more fertile < 2.9 Ga successions.

Funder

FAPESP

Julius-Maximilians-Universität Würzburg

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics,Economic Geology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3