Magnetite trace element characteristics and their use as a proximity indicator to the Avoca Tank Cu-Au prospect, Girilambone copper province, New South Wales, Australia

Author:

Simpson BrenainnORCID,Fitzherbert Joel,Moltzen Jake,Baillie Ian,Cox Brad,Huang Huiqing

Abstract

AbstractThe Avoca Tank orebody is one of a series of copper-rich orebodies occurring within the Girilambone Cu province of central New South Wales. Mineralisation at Avoca Tank is hosted within several narrow, chloritic, greenschist-facies shear zones which developed ~430 Ma (U-Pb titanite) within metasedimentary rocks around the margins of an Ordovician (ca. 470 Ma) mafic sill complex. Mineralisation at Avoca Tank preserves an early oxide phase (sulfide barren) as magnetite-rich shears that are overprinted by a pyrite-chalcopyrite-rich sulfide phase. The mineralogical and chemical footprint surrounding sulfide mineralisation is narrow (<50 m) offering limited ore vectoring using mineralogical and chemical change. However, magnetite-rich shears occur external to and within sulfide mineralised intervals, and magnetite within these shears displays distinctive trace element variation depending on proximity to Cu mineralisation. Changing magnetite trace element chemistry with increasing Cu abundance at Avoca Tank is best represented by two ternary systems. A ternary plot of Ni-V-Ti effectively separates magnetite from unmineralised zones via Ni abundance, while the ratio of Ti to V effectively separates magnetite from low-, moderate- and high-grade Cu zones. A ternary plot of Sn (100*Sn)-Zn-Ni effectively discriminates between unmineralised, low-grade and combined moderate- to high-grade zones. The greatest control here is the ratio of Zn to Sn, but the inclusion of Ni abundance provides a greater separation between low- versus combined high- and moderate-grade ore. Many of the trace element trends recorded in magnetite are mirrored in the overprinting sulfides. We propose a two-phase mineralising system, with initial development of chemically uniform, sulfide barren magnetite-chlorite-rich shear zones in proximity to the margins of older mafic sills. A subsequent, and potentially hotter (+60 °C), fluid harvested the early oxide for Fe, with the partial replacement, recrystallisation and re-equilibration magnetite within a sulfide-rich hydrothermal fluid under greenschist facies metamorphic conditions. As many known orebodies in the Girilambone Cu province are associated with magnetite-rich gangue, magnetic surveys are an effective exploration technique. Based on this pilot study, mapping trace element variation in magnetite within these bodies is an additional ore-vectoring technique in the search for economic Cu mineralisation in this province.

Funder

Department of Planning, Industry and Environment

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics,Economic Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3