Abstract
AbstractWe consider the interpolation problem for a class of radial basis functions (RBFs) that includes the classical polyharmonic splines (PHS). We show that the inverse of the system matrix for this interpolation problem can be approximated at an exponential rate in the block rank in the $$\mathcal {H}$$
H
-matrix format, if the block structure of the $$\mathcal {H}$$
H
-matrix arises from a standard clustering algorithm.
Funder
Österreichische Forschungsförderungsgesellschaft
TU Wien
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Reference43 articles.
1. Angleitner, N., Faustmann, M., Melenk, J.M.: Approximating inverse FEM matrices on non-uniform meshes with $$\cal{H}$$-matrices. Calcolo 58(3), (2021). (Paper No. 31, 36. MR 4280479)
2. Angleitner, N., Faustmann, M., Melenk, J.M.: Exponential meshes and $$\cal{H}$$-matrices. Comput. Math. Appl. 130, 21–40 (2023). (MR 4515759)
3. Aronszajn, N., Smith, K.T.: Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11, 385–475 (1961). (MR 143935)
4. Bebendorf, M.: Why finite element discretizations can be factored by triangular hierarchical matrices. SIAM J. Numer. Anal. 45(4), 1472–1494 (2007)
5. Bebendorf, M.: Hierarchical matrices. Lecture Notes in Computational Science and Engineering, vol. 63. Springer, Berlin (2008)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献