Accelerating iterative CT reconstruction algorithms using Tensor Cores

Author:

Nourazar Mohsen,Goossens Bart

Abstract

AbstractTensor Cores are specialized hardware units added to recent NVIDIA GPUs to speed up matrix multiplication-related tasks, such as convolutions and densely connected layers in neural networks. Due to their specific hardware implementation and programming model, Tensor Cores cannot be straightforwardly applied to other applications outside machine learning. In this paper, we demonstrate the feasibility of using NVIDIA Tensor Cores for the acceleration of a non-machine learning application: iterative Computed Tomography (CT) reconstruction. For large CT images and real-time CT scanning, the reconstruction time for many existing iterative reconstruction methods is relatively high, ranging from seconds to minutes, depending on the size of the image. Therefore, CT reconstruction is an application area that could potentially benefit from Tensor Core hardware acceleration. We first studied the reconstruction algorithm’s performance as a function of the hardware related parameters and proposed an approach to accelerate reconstruction on Tensor Cores. The results show that the proposed method provides about 5 $$\times $$ × increase in speed and energy saving using the NVIDIA RTX 2080 Ti GPU for the parallel projection of 32 images of size $$512\times 512$$ 512 × 512 . The relative reconstruction error due to the mixed-precision computations was almost equal to the error of single-precision (32-bit) floating-point computations. We then presented an approach for real-time and memory-limited applications by exploiting the symmetry of the system (i.e., the acquisition geometry). As the proposed approach is based on the conjugate gradient method, it can be generalized to extend its application to many research and industrial fields.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3