Self-adaptive potential-based stopping criteria for Particle Swarm Optimization with forced moves

Author:

Bassimir BerndORCID,Schmitt Manuel,Wanka RolfORCID

Abstract

AbstractWe study the variant of Particle Swarm Optimization that applies random velocities in a dimension instead of the regular velocity update equations as soon as the so-called potential of the swarm falls below a certain small bound in this dimension, arbitrarily set by the user. In this case, the swarm performs a forced move. In this paper, we are interested in how, by counting the forced moves, the swarm can decide for itself to stop its movement because it is improbable to find better candidate solutions than the already-found best solution. We formally prove that when the swarm is close to a (local) optimum, it behaves like a blind-searching cloud and that the frequency of forced moves exceeds a certain, objective function-independent value. Based on this observation, we define stopping criteria and evaluate them experimentally showing that good candidate solutions can be found much faster than setting upper bounds on the iterations and better solutions compared to applying other solutions from the literature.

Funder

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3