Abstract
AbstractMuscular dystrophies (MDs) are a diverse group of severe disorders characterized by increased skeletal muscle feebleness. In many cases, respiratory and cardiac muscles are also compromised. Skeletal muscle inflammation and fibrosis are hallmarks of several skeletal muscle diseases, including MDs. Until now, several keys signaling pathways and factors that regulate inflammation and fibrosis have been identified. However, no curative treatments are available. Therefore, it is necessary to find new therapeutic targets to fight these diseases and improve muscle performance. Lysophosphatidic acid (LPA) is an active glycerophospholipid mainly synthesized by the secreted enzyme autotaxin (ATX), which activates six different G protein-coupled receptors named LPA1 to LPA6 (LPARs). In conjunction, they are part of the ATX/LPA/LPARs axis, involved in the inflammatory and fibrotic response in several organs-tissues. This review recapitulates the most relevant aspects of inflammation and fibrosis in MDs. It analyzes experimental evidence of the effects of the ATX/LPA/LPARs axis on inflammatory and fibrotic responses. Finally, we speculate about its potential role as a new therapeutic pharmacological target to treat these diseases.
Funder
Comisión Nacional de Investigación Científica y Tecnológica
Fondo de Fomento al Desarrollo Científico y Tecnológico
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献