Author:
Bhat Harish S.,Madushani R. W. M. A.,Rawat Shagun
Publisher
Springer International Publishing
Reference18 articles.
1. Aït-Sahalia, Y.: Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70(1), 223–262 (2002)
2. Bally, V., Talay, D.: The law of the Euler scheme for stochastic differential equations. II. Convergence rate of the density. Monte Carlo Methods Appl. 2(2), 93–128 (1996)
3. Bhat, H.S., Madushani, R.W.M.A.: Density tracking by quadrature for stochastic differential equations (2016). https://arxiv.org/abs/1610.09572 . Accessed 22 July 2017
4. Bhat, H.S., Madushani, R.W.M.A.: Nonparametric adjoint-based inference for stochastic differential equations. In: 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 798–807 (2016)
5. Bhat, H.S., Madushani, R.W.M.A., Rawat, S.: Rdtq: density tracking by quadrature (2016). http://cran.r-project.org/package=Rdtq . Accessed 22 July 2017 (R package version 0.1)