Quantification of Structural Damage with Self-Organizing Maps
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-319-29956-3_5
Reference11 articles.
1. Catbas, F.N., Kijewski-Correa, T., Aktan, A.E.: Structural Identification of Constructed Systems: Approaches, Methods, and Technologies for Effective Proactive of Structural Identification. American Society of Civil Engineers (ASCE) Structural Engineering Institute (SEI), Reston (2013)
2. Gul, M., Catbas, F.N.: Damage assessment with ambient vibration data using a novel time series analysis methodology. J. Struct. Eng. 137, 1518–1526 (2011)
3. Yan, L., Elgamal, A., Cottrell, G.W.: Substructure vibration NARX neural network approach for statistical damage inference. J. Eng. Mech. 139, 737–747 (2013)
4. Yeung, W.T., Smith, J.W.: Damage detection in bridges using neural networks for pattern recognition of vibration signatures. Eng. Struct. 27, 685–698 (2005)
5. Rhim, J., Lee, S.W.: A neural network approach for damage detection and identification of structures. Comput. Mech. 16, 437–443 (1995)
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An integrated machine-learning platform for assessing various dynamic responses of steel beams;Structures;2024-03
2. Towards vibration-based damage detection of civil engineering structures: overview, challenges, and future prospects;International Journal of Mechanics and Materials in Design;2024-01-08
3. A review of latest trends in bridge health monitoring;Proceedings of the Institution of Civil Engineers - Bridge Engineering;2022-10-20
4. Generative Adversarial Networks for Labelled Vibration Data Generation;Special Topics in Structural Dynamics & Experimental Techniques, Volume 5;2022-08-03
5. A New Benchmark Problem for Structural Damage Detection: Bolt Loosening Tests on a Large-Scale Laboratory Structure;Conference Proceedings of the Society for Experimental Mechanics Series;2021-10-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3