High-Performance Matrix-Matrix Multiplications of Very Small Matrices
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-319-43659-3_48
Reference18 articles.
1. Abdelfattah, A., Baboulin, M., Dobrev, V., Dongarra, J., Earl, C., Falcou, J., Haidar, A., Karlin, I., Kolev, T., Masliah, I., Tomov, S.: High-performance tensor contractions for GPUs. In: International Conference on Computational Science (ICCS 2016). Elsevier, Procedia Computer Science, San Diego, CA, USA, June 2016
2. Lecture Notes in Computer Science;A Abdelfattah,2016
3. Ahmed, N., Mateev, N., Pingali, K.: Tiling imperfectly-nested loop nests. In: ACM/IEEE 2000 Conference Supercomputing, p. 31, November 2000
4. Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler transformations for high-performance computing. ACM Comput. Surv. 26(4), 345–420 (1994)
5. Dong, T., Haidar, A., Luszczek, P., Harris, A., Tomov, S., Dongarra, J.: LU Factorization of small matrices: accelerating batched DGETRF on the GPU. In: Proceedings of 16th IEEE International Conference on High Performance and Communications, August 2014
Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. MAGMA: Enabling exascale performance with accelerated BLAS and LAPACK for diverse GPU architectures;The International Journal of High Performance Computing Applications;2024-06-20
2. GPU-based LU Factorization and Solve on Batches of Matrices with Band Structure;Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis;2023-11-12
3. Cache Optimization and Performance Modeling of Batched, Small, and Rectangular Matrix Multiplication on Intel, AMD, and Fujitsu Processors;ACM Transactions on Mathematical Software;2023-09-19
4. Performance–energy trade-offs of deep learning convolution algorithms on ARM processors;The Journal of Supercomputing;2023-01-21
5. A Highly-Efficient Error Detection Technique for General Matrix Multiplication using Tiled Processing on SIMD Architecture;2022 IEEE 40th International Conference on Computer Design (ICCD);2022-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3