1. Jain, H., Prabhu, Y., Varma, M.: Extreme multi-label loss functions for recommendation, tagging, ranking & other missing label applications. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 935–944. ACM (2016)
2. Prabhu, Y., Varma, M.: FastXML: a fast, accurate and stable tree-classifier for extreme multi-label learning. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 263–272. ACM (2014)
3. Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for extreme multi-label classification. In: Advances in Neural Information Processing Systems, pp. 730–738 (2015)
4. Babbar, R., Shoelkopf, B.: DiSMEC: distributed sparse machines for extreme multi-label classification. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 721–729. ACM (2017)
5. Yen, I.E., Huang, X., Zhong, K., Ravikumar, P., Dhillon, I.S.: PD-sparse: a primal and dual sparse approach to extreme multiclass and multilabel classification. In: Proceedings of The 33rd International Conference on Machine Learning, pp. 3069–3077. IEEE (2016)