1. Bartkowiak, A.M., Zimroz, R.: Probabilistic principal components, how this works. In: Saeed, K., Homenda, E. (eds.) CISIM 2015, IFIP LNCS 9339 (in print) (2015)
2. Berry, M.W., et al.: Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52, 155–173 (2007)
3. Cichocki, A., Zdunek, R., Phan, A.H., Amari, Sh: Nonnegative Matrix and Tensor Factorizations. Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, Chichester (2009)
4. Fevotte, C., Bertin, N., Durrieu, J.-L.: Nonnegative matrix factorization with the Itakura-Saito divergence. With application to music analysis. Neural Comput. 21(3), 793–830 (2009)
5. Gillis, N.: The why and how of nonnegative matrix factorization. In: Suykens, J.A.K., et al. (eds.) Regularization, Optimization, Kernels and Support Machines, pp. 3–39. Chapman & Hall/CRC, London (2014)