Author:
Liu Anjin,Zhang Guangquan,Lu Jie,Lu Ning,Lin Chin-Teng
Publisher
Springer International Publishing
Reference25 articles.
1. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: Proceedings of the Twenty-Ninth International Conference on Very Large Data Bases, vol. 29, pp. 81–92. VLDB Endowment (2003)
2. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: Proceedings of the Sixth SIAM International Conference on Data Mining, vol. 6, pp. 328–339. SIAM (2006)
3. Dasu, T., Krishnan, S., Venkatasubramanian, S., Yi, K.: An information-theoretic approach to detecting changes in multi-dimensional data streams. In: Proceedings of the Symposium on the Interface of Statistics, Computing Science, and Applications, 24-27 May 2006, pp. 1–24. Citeseer (2006)
4. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman and Hall, New York (1994)
5. Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments. IEEE Trans. Neural Netw. 22(10), 1517–1531 (2011)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献