1. Christiano, P.: Non-Omniscience, Probabilistic Inference, and Metamathematics. Technical report 2014–3. Berkeley, CA: Machine Intelligence Research Institute (2014). http://intelligence.org/files/Non-Omniscience.pdf
2. Hennig, P., Osborne, M.A., Girolami, M.: Probabilistic numerics and uncertainty in computations. Proc. Royal Soci. London A: Math. Phys. Eng. Sci. 471, 2179 (2015)
3. Beckman, N.E., Nori, A.V.: Probabilistic, modular andscalable inference of typestate specifications. ACM SIGPLAN Not. 46(6), 211–221 (2011). ACM
4. Polya, G.: Mathematics and Plausible Reasoning: Patterns ofplausible inference, vol. 2. Princeton University Press, Princeton (1968)
5. Parikh, R.: Knowledge and the problem of logical omniscience. ISMIS 87, 432–439 (1987)