Early Detection and Classification of Breast Cancer
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-319-11933-5_45
Reference14 articles.
1. Survey by Indian cancer society, Indian Cancer Society (2013)
2. Padmanabhan, S., Sundarajan, R.: Enhanced Accuracy of Breast Cancer Detection in Digital Mammograms using wavelet analysis. IEEE Trans. Imag. Proc. (2012)
3. Spandana, P., Rao, K.M.M., Jwalasrikala, J.: Novel Image Processing Techniques for Early Detection of Breast Cancer. In: Matlab and Lab View Implementation. IEEE Point-of-Care Healthcare Technologies (PHT), Bangalore, India, pp. 16–18 (2013)
4. Malar, E., Kandaswamy, A., Chakravarthy, D., Giri Dharan, A.: A Novel Approach for Detection and Classification of Mammographic Microcalcifications using Wavelet Analysis and Extremelearning Machine. Computers in Biology and Medicine 42, 898–905 (2012)
5. Dash, J.K., Sahoo, L.: Wavelet Based Feaures of Circular Scan Lines for Mammographic Mass Classification. In: 1st International Conference on Recent Advances in Information Technology, RAIT (2012)
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Self-supervised adversarial adaptation network for breast cancer detection;Engineering Applications of Artificial Intelligence;2024-07
2. Enhancing breast cancer segmentation and classification: An Ensemble Deep Convolutional Neural Network and U-net approach on ultrasound images;Machine Learning with Applications;2024-06
3. Classification of benign and malignant tumor cells using bagging and Adaboost classifiers from Wisconsin dataset for the potential diagnostic application;AIP Conference Proceedings;2024
4. A divide and conquer approach to maximise deep learning mammography classification accuracies;PLOS ONE;2023-05-26
5. Breast cancer classification using optimized convolutional neural networks on enhanced segmented mammograms;MATERIALS V INTERNATIONAL YOUTH APPLIED RESEARCH FORUM “OIL CAPITAL”: Conference Series “OIL CAPITAL”;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3