Moss removal facilitates decomposition and net nitrogen loss of monospecific and mixed-species litter in a boreal peatland

Author:

Zhang Xinhou,Chen Wei,Chen Weixiang,Wang Xianwei,Mao RongORCID

Abstract

AbstractLitter decomposition plays an important role in biogeochemical cycling in boreal peatlands, where mosses, especially Sphagnum species, are a determinant. In recent decades, these peatlands have experienced a decline in moss cover due to abrupt climate warming and atmospheric nitrogen (N) deposition. To reveal the effect of the reduction in moss cover on litter decomposition, we adopted a field living moss removal experiment (with the senesced tissues remaining) in a Sphagnum-dominated boreal peatland, and investigated litter mass loss and net N loss of three deciduous woody species decomposing in monocultures and mixtures over 3 years. Based on the observed and predicted mass loss and net N loss of litter mixtures, we divided litter mixing effects into additive (no significant difference), synergistic (observed value greater than predicted value), and antagonistic (observed value lower than predicted value) effects. Across 3 years of decomposition, moss removal increased litter mass loss and net N loss, irrespective of single- or mixed-species compositions. Moss removal generally changed litter mixing effects on mass loss from antagonistic to additive effects in the initial 2 years, but from synergistic to additive effects after 3 years of decomposition. Regarding net N loss of litter mixtures, moss removal often resulted in a shift from additive to synergistic effects or from antagonistic to additive effects after 2 and 3 years of decomposition. Our observations suggest that the declines in living moss cover can accelerate litter decomposition and nutrient release, and highlight that living moss loss makes litter mixture decomposition predictable by reducing non-additive effects in boreal peatlands. Given the widespread occurrence of reduced moss cover in boreal peatlands, the mechanisms explaining living moss controls on litter decomposition and N cycling should receive significant attention in further studies.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3