Isotopic signals in an agricultural watershed suggest denitrification is locally intensive in riparian areas but extensive in upland soils

Author:

Sigler W. A.ORCID,Ewing S. A.ORCID,Wankel S. D.ORCID,Jones C. A.ORCID,Leuthold S.,Brookshire E. N. J.ORCID,Payn R. A.ORCID

Abstract

AbstractNitrogen loss from cultivated soils threatens the economic and environmental sustainability of agriculture. Nitrate (NO3) derived from nitrification of nitrogen fertilizer and ammonified soil organic nitrogen may be lost from soils via denitrification, producing dinitrogen gas (N2) or the greenhouse gas nitrous oxide (N2O). Nitrate that accumulates in soils is also subject to leaching loss, which can degrade water quality and make NO3 available for downstream denitrification. Here we use patterns in the isotopic composition of NO3 observed from 2012 to 2017 to characterize N loss to denitrification within soils, groundwater, and stream riparian corridors of a non-irrigated agroecosystem in the northern Great Plains (Judith River Watershed, Montana, USA). We find evidence for denitrification across these domains, expressed as a positive linear relationship between δ15N and δ18O values of NO3, as well as increasing δ15N values with decreasing NO3 concentration. In soils, isotopic evidence of denitrification was present during fallow periods (no crop growing), despite net accumulation of NO3 from the nitrification of ammonified soil organic nitrogen. We combine previous results for soil NO3 mass balance with δ15N mass balance to estimate denitrification rates in soil relative to groundwater and streams. Substantial denitrification from soils during fallow periods may be masked by nitrification of ammonified soil organic nitrogen, representing a hidden loss of soil organic nitrogen and an under-quantified flux of N to the atmosphere. Globally, cultivated land spends ca. 50% of time in a fallow condition; denitrification in fallow soils may be an overlooked but globally significant source of agricultural N2O emissions, which must be reduced along-side other emissions to meet Paris Agreement goals for slowing global temperature increase.

Funder

National Institute of Food and Agriculture

Montana State University Extension

Montana Fertilizer Advisory Committee

Montana Agricultural Experiment Station

Montana State University Vice President of Research

Montana State University College of Agriculture

Montana Institute on Ecosystems

NSF EPSCoR

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Water Science and Technology,Environmental Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3