Distinctive Effects of D1 and D2 Receptor Agonists on Cortico-Basal Ganglia Oscillations in a Rodent Model of L-DOPA-Induced Dyskinesia

Author:

Skovgård KatrineORCID,Barrientos Sebastian A.,Petersson Per,Halje Pär,Cenci M. Angela

Abstract

AbstractL-DOPA-induced dyskinesia (LID) in Parkinson’s disease has been linked to oscillatory neuronal activities in the cortico-basal ganglia network. We set out to examine the pattern of cortico-basal ganglia oscillations induced by selective agonists of D1 and D2 receptors in a rat model of LID. Local field potentials were recorded in freely moving rats using large-scale electrodes targeting three motor cortical regions, dorsomedial and dorsolateral striatum, external globus pallidus, and substantial nigra pars reticulata. Abnormal involuntary movements were elicited by the D1 agonist SKF82958 or the D2 agonist sumanirole, while overall motor activity was quantified using video analysis (DeepLabCut). Both SKF82958 and sumanirole induced dyskinesia, although with significant differences in temporal course, overall severity, and body distribution. The D1 agonist induced prominent narrowband oscillations in the high gamma range (70–110 Hz) in all recorded structures except for the nigra reticulata. Additionally, the D1 agonist induced strong functional connectivity between the recorded structures and the phase analysis revealed that the primary motor cortex (forelimb area) was leading a supplementary motor area and striatum. Following treatment with the D2 agonist, narrowband gamma oscillations were detected only in forelimb motor cortex and dorsolateral striatum, while prominent oscillations in the theta band occurred in the globus pallidus and nigra reticulata. Our results reveal that the dyskinetic effects of D1 and D2 receptor agonists are associated with distinct patterns of cortico-basal ganglia oscillations, suggesting a recruitment of partially distinct networks.

Funder

Lundbeckfonden

Vetenskapsrådet

Parkinsonfonden

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Neurology (clinical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3