Abstract
AbstractA degenerate Zakharov system arises as a model for the description of laser-plasma interactions. It is a coupled system of a Schrödinger and a wave equation with a non-dispersive direction. In this paper, a new local well-posedness result for rough initial data is established. The proof is based on an efficient use of local smoothing and maximal function norms.
Funder
Deutsche Forschungsgemeinschaft
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. Barros, V., Linares, F.: A remark on the well-posedness of a degenerated Zakharov system. Commun. Pure Appl. Anal. 14, 1259–1274 (2015)
2. Bejenaru, I., Herr, S., Holmer, J., Tataru, D.: On the 2D Zakharov system with L2 schrödinger data. Nonlinearity 22, 1063–1089 (2009)
3. Bejenaru, I., Ionescu, A.D., Kenig, C.E., Tataru, D.: Global Schrödinger maps in dimension d ≥ 2: small data in the critical Sobolev spaces. Ann. Math. (2) 173, 1443–1506 (2011)
4. Bourgain, J., Colliander, J.: On wellposedness of the Zakharov system. Int. Math. Res. Not. 1996, 515–546 (1996)
5. Candy, T., Herr, S., Nakanishi, K.: The Zakharov system in dimension d ≥ 4. J. Eur. Math. Soc. (to appear), arXiv:1912.05820 (2019)