Ein Ansatz zur Vorhersage der Erststimmenanteile bei Bundestagswahlen

Author:

Neunhoeffer MarcelORCID,Gschwend ThomasORCID,Munzert Simon,Stoetzer Lukas F.

Abstract

ZusammenfassungNahezu die Hälfte der Bundestagsmandate wird über die Direktwahl in den Wahlkreisen vergeben. Das bleibt in einem Großteil der Wahlprognosemodelle jedoch unberücksichtigt. In diesem Beitrag stellen wir einen Ansatz zur Vorhersage der Erststimmenanteile in Wahlkreisen für Bundestagswahlen vor. Dazu kombinieren wir das Zweitstimmenvorhersagemodell von zweitstimme.org mit zwei Erststimmenmodellen, einer linearen Regression und einem künstlichen neuronalen Netzwerk, welche Kandidierenden- und Wahlkreischarakteristika zur Vorhersage nutzen. Für unseren Ansatz sind alle verwendeten Daten vor der jeweiligen Wahl öffentlich verfügbar und somit für eine echte Vorhersage nutzbar. Das Modell kann so bei künftigen Wahlen wertvolle Informationen für Kandidierende und die interessierte Öffentlichkeit bereitstellen. Die Vorhersagen sind darüber hinaus auch für erklärende Forschung relevant: Mithilfe der resultierenden Gewinnwahrscheinlichkeiten lassen sich bessere Messinstrumente zur Charakterisierung der Kompetitivität eines Wahlkreises und der zu erwartenden Knappheit des Wahlkreisrennens erstellen, welche politisches Verhalten beeinflussen können. Zudem erlaubt die Vorhersage, empirische Aussagen zur zu erwartenden Größe des Bundestags sowie seiner personellen Zusammensetzung zu treffen.

Funder

Universität Mannheim

Publisher

Springer Science and Business Media LLC

Subject

Sociology and Political Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bürger:innenprognosen in einem Mischwahlsystem: Die deutsche Bundestagswahl 2021 als Testfall;Wahlen und Wähler;2024

2. Predicting Election Results with Machine Learning—A Review;Proceedings of Eighth International Congress on Information and Communication Technology;2023-09-01

3. The Zweitstimme Model: A Dynamic Forecast of the 2021 German Federal Election;PS: Political Science & Politics;2021-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3