On the Effect of Interphase Boundary Energy Anisotropy on Morphologies: A New Type of Eutectic Grain Observed in a Three-Phase Eutectic System

Author:

Mohagheghi Samira,Şerefoğlu Melis

Abstract

AbstractEutectic microstructures are dramatically affected by the anisotropy in interphase boundary energy. Depending on this anisotropy function, different eutectic grains may grow simultaneously at the same experimental conditions. In all reported quasi-isotropic and anisotropic two-phase and three-phase eutectic grains in thin samples, lamellar morphology is observed and the microstructure is essentially two dimensional (2D), since the interphase boundaries are perpendicular to the sample walls. Using the β(In)–In2Bi–γ(Sn) system and real-time solidification experiments in thin samples, we introduce a unique and new type of anisotropic three-phase eutectic grain, entitled here as “Laminated Matrix with Rods (LMR).” In this grain, due to the anisotropy in In2Bi/γ(Sn) interphase boundary, the evolving phases, and hence, the microstructures observed through the two glass plates of the thin sample are completely different, despite the strong confinement effect. During rotating directional solidification (RDS) experiments, the morphology or the aspect ratio of all phases changes periodically and drastically. Specifically, In2Bi, β(In), and γ(Sn) phases evolve from all being lamellar perpendicular to the sample walls to the matrix, elongated/trapezoidal rods, and a lamella parallel to the sample walls, respectively. Our experimental results show that these morphological transitions are due to change in the interphase boundary orientation with respect to the growth direction. Graphical abstract

Funder

Marmara University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3