Monitoring the risk of a tailings dam collapse through spectral analysis of satellite InSAR time-series data

Author:

Das Sourav,Priyadarshana Anuradha,Grebby Stephen

Abstract

AbstractSlope failures possess destructive power that can cause significant damage to both life and infrastructure. Monitoring slopes prone to instabilities is therefore critical in mitigating the risk posed by their failure. The purpose of slope monitoring is to detect precursory signs of stability issues, such as changes in the rate of displacement with which a slope is deforming. This information can then be used to predict the timing or probability of an imminent failure in order to provide an early warning. Most approaches to predicting slope failures, such as the inverse velocity method, focus on predicting the timing of a potential failure. However, such approaches are deterministic and require some subjective analysis of displacement monitoring data to generate reliable timing predictions. In this study, a more objective, probabilistic-learning algorithm is proposed to detect and characterise the risk of a slope failure, based on spectral analysis of serially correlated displacement time-series data. The algorithm is applied to satellite-based interferometric synthetic radar (InSAR) displacement time-series data to retrospectively analyse the risk of the 2019 Brumadinho tailings dam collapse in Brazil. Two potential risk milestones are identified and signs of a definitive but emergent risk (27 February 2018-26 August 2018) and imminent risk of collapse of the tailings dam (27 June 2018-24 December 2018) are detected by the algorithm as the empirical points of inflection and maximum on a risk trajectory, respectively. Importantly, this precursory indication of risk of failure is detected as early as at least five months prior to the dam collapse on 25 January 2019. The results of this study demonstrate that the combination of spectral methods and second order statistical properties of InSAR displacement time-series data can reveal signs of a transition into an unstable deformation regime, and that this algorithm can provide sufficient early-warning that could help mitigate catastrophic slope failures.

Funder

Curtin University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3