Modeling spatial dependencies of natural hazards in coastal regions: a nonstationary approach with barriers

Author:

Chaudhuri Somnath,Juan Pablo,Saurina Laura Serra,Varga Diego,Saez Marc

Abstract

AbstractNatural hazards like floods, cyclones, earthquakes, or, tsunamis have deep impacts on the environment and society causing damage to both life and property. These events can cause widespread destruction and can lead to long-term socio-economic disruption often affecting the most vulnerable populations in society. Computational modeling provides an essential tool to estimate the damage by incorporating spatial uncertainties and examining global risk assessments. Classical stationary models in spatial statistics often assume isotropy and stationarity. It causes inappropriate smoothing over features having boundaries, holes, or physical barriers. Despite this, nonstationary models like barrier model have been little explored in the context of natural disasters in complex land structures. The principal objective of the current study is to evaluate the influence of barrier models compared to classical stationary models by analysing the incidence of natural disasters in complex spatial regions like islands and coastal areas. In the current study, we have used tsunami records from the island nation of Maldives. For seven atoll groups considered in our study, we have implemented three distinct categories of stochastic partial differential equation meshes, two for stationary models and one that corresponds to the barrier model concept. The results show that when assessing the spatial variance of tsunami incidence at the atoll scale, the barrier model outperforms the other two models while maintaining the same computational cost as the stationary models. In the broader picture, this research work contributes to the relatively new field of nonstationary barrier models and intends to establish a robust modeling framework to explore spatial phenomena, particularly natural hazards, in complex spatial regions having physical barriers.

Funder

Universitat de Girona

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Safety, Risk, Reliability and Quality,Water Science and Technology,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3