Robustness of design flood estimates under nonstationary conditions: parameter sensitivity perspective

Author:

Xiong Bin,Zheng Shuchen,Ma Qiumei,Fu Chun,Wen Tianfu,He Zhongzheng,Li Lingqi,Xu Chong-Yu

Abstract

AbstractThe changing frequency of flooding in global watersheds, driven by various human and natural factors like land use/cover changes and global warming, necessitates innovative approaches in flood frequency analysis and risk assessment. Nonetheless, the reliability of nonstationary frequency analysis models remains a concern given challenges in accurately measuring the uncertainty introduced by these methods and the impact on design flood values. In this study, deviation-based differential sensitivity indices, including single-parameter (SDDSI) and entire-parameter (EDDSI) measures were developed to assess the influence of parameter uncertainty in nonstationary models using Bayesian statistics and "equivalent reliability" nonstationary design. The Weihe River, the largest tributary of the Yellow River which is experiencing both climate change and heavy impact of human activities, is chosen to be the study area to investigate the impact of precipitation change and land use change on nonstationary flood frequency. Results show that in the One-At-A-Time (OAT) sensitivity analysis under a small uncertainty scenario (SUS) for parameter inputs, the shape parameter stands out as the most influential factor (SDDSI_SUS = 0.347) affecting the 100-year design flood in the Stationary Generalized Extreme Value (SGEV) model. For the Non-Stationary GEV (NGEV) models, the influence of this parameter is less pronounced, with SDDSI_SUS values of 0.095 and 0.093 for the SSP126 and SSP585 scenarios, respectively. Instead, attention turns to the regression coefficient of the grassland area, associated with the GEV scale parameter. In global sensitivity analysis under the posterior uncertainty scenario (PUS) for parameter inputs, the EDDSI_PUS values for SGEV, NGEV_SSP126, and NGEV_SSP585 models were 0.52, 1.41, and 1.30, respectively, inferring heightened sensitivity of NGEV models to perturbations from entire parameters. It is anticipated that incorporating additional evidence, such as historical flood data, is essential for accurate nonstationary hydrological design to mitigating the influence of parameter uncertainty. The sensitivity indices in this study provide significant insights for assessing the robustness of nonstationary hydrological design in flood risk management and applications.

Funder

Key Laboratory of Jiangxi Province for Poyang Lake Water Resources and Environment

National Natural Science Foundation of China

Great Science and Technology Project of Ministry of Water Resources

Research Council of Norway

University of Oslo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3