Abstract
AbstractGreat concern for human health has led the food industry to focus on functional products. Microparticles based on nanoemulsions (M1) and nanocomposites (M2) were developed to deliver vital agents against colorectal cancer and microbial infection. The functional microparticles were prepared by coating extra virgin olive oil (EVOO), probiotics, and fig leaves extract with sodium alginate (SA) and whey protein concentrate (WPC) using the freeze drying technique. The antimicrobial, cytotoxic, apoptotic, encapsulation efficiency (EE %), release rate, and antioxidant activity were investigated. The yogurt was loaded with microparticles and evaluated microbiology, chemically, and sensory during storage. The results showed that the size of nanoemulsion and nanocomposite was between 476.1 and 517.7 nm, while the zeta potentials were −30.1 and −34.5 mV, respectively. M2 microparticles recorded the lowest IC50 values against human colorectal cancerous Caco-2 and HCT 116 cell lines: 1.10 μg/mL and 15.34 μg/mL, respectively. The inhibition zones were between 11 to 20 and 9 to 18 mm for M1 and M2, respectively. The highest EE% was 89.20% for EVOO and 91.34% for probiotics in M2 microparticles. The induction period of the EVOO from M1 and M2 microparticles was 15.37 h and 13.09 h, respectively. The antioxidant activity was between 78 and 65.8% for M1 and M2 microparticles, respectively. The probiotics in yogurt with microparticles were more than un-coated cells, and the taste of these samples was acceptable during storage. This study suggests that microencapsulation could be considered an interesting therapeutic tool when EVOO and probiotics are used in functional food.
Funder
National Research Centre Egypt
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献