Techno-economic analysis of production of octane booster components derived from lignin

Author:

Ng Zi Wei,Yeoh King Yee,Hafyan Rendra Hakim,Putranto Aditya,Horri Bahman Amini,Zein Sharif H.,Rhamdhani MAkbar,Aziz Muhammad,Butar Ivan

Abstract

AbstractIn this study, a comprehensive process for production of an environmentally friendly octane booster (acetophenone) from lignin is presented, along with a detailed techno-economic analysis. Recognizing that much of the prior research on octane boosters has been confined to experimental lab-level investigations, this study develops comprehensive process design to unravel the intricacies of large-scale acetophenone production. The acetophenone production process involves catalytic hydrogenolysis, which also yields phenol as a valuable side product. Based on the process flow diagram, mass and energy balances were developed, revealing significantly improved yields and purity of acetophenone compared to industry standards, reaching 0.74 kg acetophenone per kg of lignin and 99 wt%. In the techno-economic analysis, calculations involving fixed capital investment (FCI), operating costs, and working capital were conducted based on a feed of 100 kg/h of dry lignin. The results indicate FCI at 2.72 million USD, operating costs at 1.09 million USD per year, and working capital at 0.57 million USD. Assuming a 20-year operational lifespan, the payback period is estimated at 6.09 years, as depicted by the cumulative cash flow diagram. Moreover, techno-economic analysis demonstrates a net present value (NPV) of 3.24 million USD at a 10% discount rate, an internal rate of return (IRR) of 22.73%, and a return on investment (ROI) of 34.39%. These positive outcomes underscore the robust profitability of the proposed acetophenone production plant derived from lignin. Additionally, a sensitivity analysis on the IRR indicates that increasing the production capacity could further enhance profitability, reaffirming the feasibility of the plant’s operation. Crucially, this study highlights the potential for sustainable and economically viable production of acetophenone, offering an environmentally friendly alternative to toxic octane boosters and advancing the development of sustainable fuel additives. Graphical Abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3