Sunlight-driven photocatalytic degradation of methylene blue using ZnO/biochar nanocomposite derived from banana peels

Author:

Eswaran Prabakaran,Madasamy Priya Dharshini,Pillay Kriveshini,Brink Hendrik

Abstract

AbstractThis study describes the preparation of zinc oxide nanocomposite and its application as photocatalyst in the degradation of methylene blue under sunlight irradiation. Zinc oxide-coated biochar (ZnO/BC) nanocomposite was prepared using the hydrothermal method from banana peels and zinc acetate dihydrate as precursors. The biochar (BC), ZnO nanoparticles (ZnONPs), and ZnO/BC nanocomposite were characterized, and the results showed that ZnONPs had definite crystallinity and a regular surface morphology, with particles approximately 18 nm in size, and a XRD pattern corresponding to ZnONPs. In contrast, the ZnO/BC nanocomposite exhibited a more amorphous structure consistent with wurtzite (ZnO) and an irregular surface morphology with clusters of white particles measuring around 20–30 nm. Tauc’s plot was used to calculate the band gaps energy of ZnONPs (3.04 eV) and ZnO/BC nanocomposite (2.89 eV). Catalyst-free, ZnONPs, and ZnO/BC nanocomposite were utilized for the photocatalytic degradation of methylene blue (MB) under sunlight irradiation for 0 to 120 min in which ZnO/BC nanocomposite showed excellent photocatalytic degradation of MB under sunlight irradiation at 0 to 120 min due to lower band gap energy and synergetic effect between ZnO and BC. Dosages of 100 mg (ZnO/BC nanocomposite) and 10 ppm (MB) were optimized to obtain the best photocatalytic degradation efficiency (92 %) under sunlight irradiation with 0 to 120 min. The process was conducted with various parameters like dosage variation, concentration of MB, and different pH 3, 5, 8, and 10 to improve the photocatalytic degradation of MB from wastewater. The results indicated that the optimal conditions for the photocatalytic degradation of MB (92% after 120 min) were a catalyst dosage of 100 mg, an MB concentration of 10 ppm, and a pH of 10. This work demonstrates the potential of ZnO/BC nanocomposite photocatalyst for application in wastewater treatment and environment remediation.

Funder

Austria’s Agency for Education and Internationalization

University of Pretoria

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3