Abstract
Abstract
Purpose
The cardiorespiratory polysomnography (PSG) is an expensive and limited resource. The Sleepiz One + is a novel radar-based contactless monitoring device that can be used e.g. for longitudinal detection of nocturnal respiratory events. The present study aimed to compare the performance of the Sleepiz One + device to the PSG regarding the accuracy of apnea–hypopnea index (AHI).
Methods
From January to December 2021, a total of 141 adult volunteers who were either suspected of having sleep apnea or who were healthy sleepers took part in a sleep study. This examination served to validate the Sleepiz One + device in the presence and absence of additional SpO2 information. The AHI determined by the Sleepiz One + monitor was estimated automatically and compared with the AHI derived from manual PSG scoring.
Results
The correlation between the Sleepiz-AHI and the PSG-AHI with and without additional SpO2 measurement was rp = 0.94 and rp = 0,87, respectively. In general, the Bland–Altman plots showed good agreement between the two methods of AHI measurement, though their deviations became larger with increasing sleep-disordered breathing. Sensitivity and specificity for recordings without additional SpO2 was 85% and 88%, respectively. Adding a SpO2 sensor increased the sensitivity to 88% and the specificity to 98%.
Conclusion
The Sleepiz One + device is a valid diagnostic tool for patients with moderate to severe OSA. It can also be easily used in the home environment and is therefore beneficial for e.g. immobile and infectious patients.
Trial registration number and date of registration for prospectively registered trials
This study was registered on clinicaltrials.gov (NCT04670848) on 2020–12-09.
Funder
Universitätsklinikum Essen
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Senaratna CV, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC et al (2017) Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev 34:70–81
2. Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ et al (2019) Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med 7(8):687–698
3. Marriott RJ, McArdle N, Singh B, King S, Ling I, Ward K et al (2022) The changing profile of obstructive sleep apnea: long term trends in characteristics of patients presenting for diagnostic polysomnography. Sleep Sci 15(Spec 1):28–40
4. Boutari C, Mantzoros CS (2022) A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism 133:155217
5. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 177(9):1006–1014