High-Speed All-Optical Neural Interfaces with 3D Temporally Focused Holography

Author:

Oldenburg Ian Antón,Bounds Hayley Anne,Pégard Nicolas C.

Abstract

AbstractUnderstanding brain function requires technologies that can monitor and manipulate neural activity with cellular resolution and millisecond precision in three dimensions across large volumes. These technologies are best designed using interdisciplinary approaches combining optical techniques with reporters and modulators of neural activity. While advances can be made by separately improving optical resolution or opsin effectiveness, optimizing both systems together matches the strengths and constraints of different approaches to create a solution optimized for the needs of neuroscientists. To achieve this goal, we first developed a new multiphoton photoexcitation method, termed 3D-Scanless Holographic Optogenetics with Temporal focusing (3D-SHOT), that enables simultaneous photoactivation of arbitrary sets of neurons in 3D. Our technique uses point-cloud holography to place multiple copies of a temporally focused disc, matched to the dimensions of a neuron’s cell body, anywhere within the operating volume of the microscope. However, since improved placement of light, on its own, is not sufficient to allow precise control of neural firing patterns, we also developed and tested optogenetic actuators ST-ChroME and ST-eGtACR1 that fully leverage the new experimental capabilities of 3D-SHOT. The synergy of fast opsins matched with our technology allows reliable, precisely timed control of evoked action potentials and enables on-demand read-write operations with unprecedented precision. In this chapter, we review the steps necessary to implement 3D-SHOT and provide a guide to selecting ideal opsins that will work with it. Such collaborative, interdisciplinary approaches will be essential to develop the experimental capabilities needed to gain causal insight into the fundamental principles of the neural code underlying perception and behavior.

Publisher

Springer US

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3