Relativistic Modelling for Accurate Time Transfer via Optical Inter-Satellite Links

Author:

Dassié ManueleORCID,Giorgi Gabriele

Abstract

AbstractThe DLR Institute for Communication and Navigation is currently working on a new GNSS architecture that enables accurate autonomous inter-satellite synchronization at picosecond-level. Synchronization is achieved via time transfer techniques enabled by optical inter-satellite links (OISLs), paving the way for a system in which space (orbits) and time (synchronization) can be effectively separated, leading to a high level of synchronization throughout the constellation, which in turn greatly improves accurate orbit determination. This is possible provided that relativistic effects are adequately taken into account. This work focuses on a two-way time transfer scheme based on the exchange of time stamps via optical signals, which allows the synchronization of a GNSS satellite system with respect to a defined coordinate time with picosecond-level accuracy. We analyse the impact of relativistic effects in clock offset estimation between optically linked clocks: results show that to achieve synchronization at this level of accuracy it is necessary to account for terrestrial geopotential harmonics up to the third order while the gravitational influence of additional celestial bodies can be neglected. Relativistic delays in the propagation of electromagnetic waves through spacetime are also evaluated. It is shown that for a two-way synchronization method, the Euclidean expression for the propagation of light is sufficient to achieve picosecond synchronization, provided m-level orbit determination of both satellites is available, and the hardware delays are well calibrated to the targeted accuracy. Also, we show how to practically achieve autonomous synchronization via a sequence of pair-wise synchronizations across all satellites of the constellation.

Funder

Helmholtz-Gemeinschaft

european space agency

Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3