Abstract
AbstractWe introduce five constraint models for the 3-dimensional stable matching problem with cyclic preferences and study their relative performances under diverse configurations. While several constraint models have been proposed for variants of the two-dimensional stable matching problem, we are the first to present constraint models for a higher number of dimensions. We show for all five models how to capture two different stability notions, namely weak and strong stability. Additionally, we translate some well-known fairness notions (i.e. sex-equal, minimum regret, egalitarian) into 3-dimensional matchings, and present how to capture them in each model. Our tests cover dozens of problem sizes and four different instance generation methods. We explore two levels of commitment in our models: one where we have an individual variable for each agent (individual commitment), and another one where the determination of a variable involves pairing the three agents at once (group commitment). Our experiments show that the suitability of the commitment depends on the type of stability we are dealing with, and that the choice of the search heuristic can help improve performance. Our experiments not only brought light to the role that learning and restarts can play in solving this kind of problems, but also allowed us to discover that in some cases combining strong and weak stability leads to reduced runtimes for the latter.
Funder
OTKA
János Bolyai Research Fellowship
COST Action European Network for Game Theory
Science Foundation Ireland
European Regional Development Fund
University College Cork
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献