Population affinity estimation using pelvic measurements based on computed tomographic data acquired from Japanese and Western Australian populations

Author:

Torimitsu SuguruORCID,Nakazawa Akari,Flavel Ambika,Swift Lauren,Makino Yohsuke,Iwase Hirotaro,Franklin Daniel

Abstract

AbstractThe present study analyzes morphological differences in the pelvis of Japanese and Western Australian individuals and investigates the feasibility of population affinity classification based on computed tomography (CT) data. The Japanese and Western Australian samples comprise CT scans of 207 (103 females; 104 males) and 158 (78 females; 80 males) adult individuals, respectively. Following volumetric reconstruction, a total of 19 pelvic landmarks were obtained on each sample, and 11 measurements, including two angles, were calculated. Machine learning methods (random forest modeling [RFM] and support vector machine [SVM]) were used to classify population affinity. Classification accuracy of the two-way models was approximately 80% for RFM: the two-way sex-specific and sex-mixed models for SVM achieved > 90% and > 85%, respectively. The sex-specific models had higher accurate classification rates than the sex-mixed models, except for the Japanese male sample. The classification accuracy of the four-way sex and population affinity model had an overall classification accuracy of 76.71% for RFM and 87.67% for SVM. All the correct classification rates were higher in the Japanese relative to the Western Australian sample. Our data suggest that pelvic morphology is sufficiently distinct between Japanese and Western Australian individuals to facilitate the accurate classification of population affinity based on measurements acquired in CT images. To the best of our knowledge, this is the first study investigating the feasibility of population affinity estimation based on CT images of the pelvis, which appears as a viable supplement to traditional approaches based on cranio-facial morphology.

Funder

The University of Tokyo

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3