Palaeozoic stromatoporoid diagenesis: a synthesis

Author:

Kershaw Stephen,Munnecke Axel,Jarochowska Emilia,Young Graham

Abstract

AbstractPalaeozoic stromatoporoids, throughout their 100-million + year history (Middle Ordovician to Late Devonian and rare Carboniferous), are better preserved than originally aragonite molluscs, but less well-preserved than low magnesium-calcite brachiopods, bryozoans, trilobites and corals. However, the original mineralogy of stromatoporoids remains unresolved, and details of their diagenesis are patchy. This study of approximately 2000 stromatoporoids and the literature recognises three diagenetic stages, applicable throughout their geological history. Timing of processes may vary in and between stages; some components are not always present. Stage 1, on or just below sediment surface, comprises the following: micrite filling of upper gallery space after death, then filling of any remaining space by non-ferroan then ferroan calcite in decreasing oxygen of pore-waters; partial lithification of associated sediment from which stromatoporoids may be exhumed and redeposited, evidence of general early lithification of middle Palaeozoic shallow-marine carbonates; microdolomite formation, with the Mg interpreted to have been derived from original high-Mg calcite (HMC) mineralogy (likely overlaps Stage 2). Stage 2, short distance below sediment surface, comprising the following: fabric-retentive recrystallisation (FRR) of stromatoporoid skeletons forming fabric-retentive irregular calcite (FRIC), mostly orientated normal to growth layers, best seen in cross-polarised light. FRIC stops at stromatoporoid margins in contact with sediment and bioclasts. FRIC geometry varies, indicating some taxonomic control. Evidence that FRIC formed early in diagenetic history includes syntaxial continuation of FRIC into some sub-stromatoporoid cavities (Type 1 cement), although others were pre-occupied by early cement fills (Type 2 cement) formed before FRR, preventing syntaxial continuation of FRIC into cavities. Likely contemporaneous with FRIC formation, stromatoporoids in argillaceous micrites drew carbonate from adjacent sediment during reorganisation of argillaceous micrite into limestone–marl rhythms that are also early diagenetic. Stage 3, largely shallow burial, comprises the following: dissolution and silicification, but these may have occurred earlier in stromatoporoid diagenetic histories (more data required); burial pressure dissolution forming stylolites.

Publisher

Springer Science and Business Media LLC

Subject

Paleontology,Stratigraphy,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3