Abstract
AbstractIn the language $$\lbrace 0, 1, \circ , \preceq \rbrace $$
{
0
,
1
,
∘
,
⪯
}
, where 0 and 1 are constant symbols, $$\circ $$
∘
is a binary function symbol and $$\preceq $$
⪯
is a binary relation symbol, we formulate two theories, $$ \textsf {WD} $$
WD
and $$ {\textsf {D}}$$
D
, that are mutually interpretable with the theory of arithmetic $$ {\textsf {R}} $$
R
and Robinson arithmetic $${\textsf {Q}} $$
Q
, respectively. The intended model of $$ \textsf {WD} $$
WD
and $$ {\textsf {D}}$$
D
is the free semigroup generated by $$\lbrace {\varvec{0}}, {\varvec{1}} \rbrace $$
{
0
,
1
}
under string concatenation extended with the prefix relation. The theories $$ \textsf {WD} $$
WD
and $$ {\textsf {D}}$$
D
are purely universally axiomatised, in contrast to $$ {\textsf {Q}} $$
Q
which has the $$\varPi _2$$
Π
2
-axiom $$\forall x \; [ \ x = 0 \vee \exists y \; [ \ x = Sy \ ] \ ] $$
∀
x
[
x
=
0
∨
∃
y
[
x
=
S
y
]
]
.
Publisher
Springer Science and Business Media LLC
Reference20 articles.
1. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Universitext. Springer, Berlin Heidelberg (2001)
2. Cheng, Y.: Find the limit of incompleteness I. Bull. Symbol. Logic 26(3–4), 268–286 (2020)
3. Ganea, M.: Arithmetic on semigroups. J. Symb. Log. 74, 265–278 (2009)
4. Grzegorczyk, A.: Undecidability without arithmetization. Stud. Logica 79, 163–230 (2005)
5. Grzegorczyk, A., Zdanowski, K.: Undecidability and concatenation. In: Ehrenfeucht et al. (eds.) Andrzej Mostowski and Foundational Studies, pp. 72–91. IOS, Amsterdam (2008)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献