Abstract
AbstractWe reimplement the creature forcing construction used by Fischer et al. (Arch Math Log 56(7–8):1045–1103, 2017. 10.1007/S00153-017-0553-8. arXiv:1402.0367 [math.LO]) to separate Cichoń’s diagram into five cardinals as a countable support product. Using the fact that it is of countable support, we augment our construction by adding uncountably many additional cardinal characteristics, sometimes referred to as localisation cardinals.
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Bartoszyński, T.: Additivity of measure implies additivity of category. Trans. Am. Math. Soc. 281(1), 209–213 (1984). https://doi.org/10.2307/1999530
2. Bartoszyński, T., Judah, H.: Set Theory: On the Structure of the Real Line. A K Peters, Wellesley, MA (1995). https://doi.org/10.1112/S0024609396222374
3. Blass, A.: Simple cardinal characteristics of the continuum. In: Haim, J. (ed.) Set Theory of the Reals. Israel Mathematics Conference Proceedings, vol. 6, pp. 63–90. American Mathematical Society, Providence (1993)
4. Blass, A.: Combinatorial cardinal characteristics of the continuum. In: Foreman, M., Kanamori, A. (eds.) Handbook of Set Theory, pp. 395–489. Springer, Dordrecht (2010). https://doi.org/10.1007/978-1-4020-5764-9_7
5. Brendle, J., Cardona, M.A., Mejía, D.A.: Filter-linkedness and its effect on preservation of cardinal characteristics. Ann. Pure Appl. Log. 172(1), 1–30 (2021). https://doi.org/10.1016/j.apal.2020.102856
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献