The Josefson–Nissenzweig theorem and filters on $$\omega $$

Author:

Marciszewski Witold,Sobota DamianORCID

Abstract

AbstractFor a free filter F on $$\omega $$ ω , endow the space $$N_F=\omega \cup \{p_F\}$$ N F = ω { p F } , where $$p_F\not \in \omega $$ p F ω , with the topology in which every element of $$\omega $$ ω is isolated whereas all open neighborhoods of $$p_F$$ p F are of the form $$A\cup \{p_F\}$$ A { p F } for $$A\in F$$ A F . Spaces of the form $$N_F$$ N F constitute the class of the simplest non-discrete Tychonoff spaces. The aim of this paper is to study them in the context of the celebrated Josefson–Nissenzweig theorem from Banach space theory. We prove, e.g., that, for a filter F, the space $$N_F$$ N F carries a sequence $$\langle \mu _n:n\in \omega \rangle $$ μ n : n ω of normalized finitely supported signed measures such that $$\mu _n(f)\rightarrow 0$$ μ n ( f ) 0 for every bounded continuous real-valued function f on $$N_F$$ N F if and only if $$F^*\le _K{\mathcal {Z}}$$ F K Z , that is, the dual ideal $$F^*$$ F is Katětov below the asymptotic density ideal $${\mathcal {Z}}$$ Z . Consequently, we get that if $$F^*\le _K{\mathcal {Z}}$$ F K Z , then: (1) if X is a Tychonoff space and $$N_F$$ N F is homeomorphic to a subspace of X, then the space $$C_p^*(X)$$ C p ( X ) of bounded continuous real-valued functions on X contains a complemented copy of the space $$c_0$$ c 0 endowed with the pointwise topology, (2) if K is a compact Hausdorff space and $$N_F$$ N F is homeomorphic to a subspace of K, then the Banach space C(K) of continuous real-valued functions on K is not a Grothendieck space. The latter result generalizes the well-known fact stating that if a compact Hausdorff space K contains a non-trivial convergent sequence, then the space C(K) is not Grothendieck.

Funder

Narodowe Centrum Nauki

Austrian Science Fund

University of Vienna

Publisher

Springer Science and Business Media LLC

Reference41 articles.

1. Arkhangel’skiĭ, A.V.: A survey of $$C_p$$-theory. Quest. Answ. Gen. Topol. 5, 1–109 (1987)

2. Banakh, T., Kąkol, J., Śliwa, W.: Metrizable quotients of $$C_p$$-spaces. Topol. Appl. 249, 95–102 (2018)

3. Banakh, T., Kąkol, J., Śliwa, W.: Josefson–Nissenzweig property for $$C_{p}$$-spaces. RACSAM 113, 3015–3030 (2019)

4. Bartoszyński, T.: On the structure of measurable filters on a countable set. Real Anal. Exch. 17(2), 681–701 (1992)

5. Bereznitskiĭ, Y.F.: Nonhomeomorphism between two bicompacta, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 26(6), 8–10 (1971)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3