Model theory of monadic predicate logic with the infinity quantifier

Author:

Carreiro Facundo,Facchini AlessandroORCID,Venema Yde,Zanasi Fabio

Abstract

AbstractThis paper establishes model-theoretic properties of $$\texttt {M} \texttt {E} ^{\infty }$$ M E , a variation of monadic first-order logic that features the generalised quantifier $$\exists ^\infty $$ (‘there are infinitely many’). We will also prove analogous versions of these results in the simpler setting of monadic first-order logic with and without equality ($$\texttt {M} \texttt {E} $$ M E and $$\texttt {M} $$ M , respectively). For each logic $$\texttt {L} \in \{ \texttt {M} , \texttt {M} \texttt {E} , \texttt {M} \texttt {E} ^{\infty }\}$$ L { M , M E , M E } we will show the following. We provide syntactically defined fragments of $$\texttt {L} $$ L characterising four different semantic properties of $$\texttt {L} $$ L -sentences: (1) being monotone and (2) (Scott) continuous in a given set of monadic predicates; (3) having truth preserved under taking submodels or (4) being truth invariant under taking quotients. In each case, we produce an effectively defined map that translates an arbitrary sentence $$\varphi $$ φ to a sentence $$\varphi ^\mathsf{p}$$ φ p belonging to the corresponding syntactic fragment, with the property that $$\varphi $$ φ is equivalent to $$\varphi ^\mathsf{p}$$ φ p precisely when it has the associated semantic property. As a corollary of our developments, we obtain that the four semantic properties above are decidable for $$\texttt {L} $$ L -sentences.

Funder

SUPSI - University of Applied Sciences and Arts of Southern Switzerland

Publisher

Springer Science and Business Media LLC

Subject

Logic,Philosophy

Reference33 articles.

1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 3, pp. 2–168. Oxford University Press (1994)

2. Ackermann, W.: Solvable Cases of the Decision Problem. North-Holland Publishing Company, Amsterdam (1954)

3. Acosta, I.B.: Studies in the extension of standard modal logic with an infinite modality. Master’s thesis, Institute for Logic, Language and Computation, Universiteit van Amsterdam (2020)

4. Behmann, H.: Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem. Mathematische Annalen (1922)

5. van Benthem, J.: Dynamic bits and pieces. ILLC preprint LP-1997-01 (1997)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. INTERLEAVING LOGIC AND COUNTING;The Bulletin of Symbolic Logic;2023-07-26

2. COUNTING TO INFINITY: GRADED MODAL LOGIC WITH AN INFINITY DIAMOND;The Review of Symbolic Logic;2022-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3