Investigating and Reducing the Architectural Impact of Transient Faults in Special Function Units for GPUs

Author:

Rodriguez Condia Josie E.ORCID,Guerrero-Balaguera Juan-DavidORCID,Patiño Núñez Edwar J.,Limas RobertORCID,Sonza Reorda MatteoORCID

Abstract

AbstractEnsuring the reliability of GPUs and their internal components is paramount, especially in safety-critical domains like autonomous machines and self-driving cars. These cutting-edge applications heavily rely on GPUs to implement complex algorithms due to their implicit programming flexibility and parallelism, which is crucial for efficient operation. However, as integration technologies advance, there is a growing concern regarding the potential increase in fault sensitivity of the internal components of current GPU generations. In particular, Special Function Unit (SFU) cores inside GPUs are used in multimedia, High-Performance Computing, and neural network training. Despite their frequent usage and critical role in several domains, reliability evaluations on SFUs and the development of effective mitigation solutions have yet to be studied and remain unexplored. This work evaluates the impact of transient faults in the main hardware structures of SFUs in GPUs. In addition, we analyze the main overhead costs and benefits of developing selective-hardening mechanisms for SFUs. We focus on evaluating and analyzing two SFU architectures for GPUs (’fused’ and ’modular’) and their relations to energy, area, and reliability impact on parallel applications. The experiments resort to fine-grain fault injection campaigns on an RTL GPU model (FlexGripPlus) instrumented with both SFUs. The results on both SFU architectures indicate that fused SFUs (in commercial-grade devices) require lower area overhead (about 27%) for their integration in GPUs but are more vulnerable to transient faults (in up to 47% for the analyzed cases) and less power efficient (in up to 36.6%) than modular SFUs. Moreover, the reliability estimation shows that Modular SFUs are structurally more resilient than Fused ones in up to one order of magnitude. Similarly, selective-hardening mechanism based on Triple-Modular Redundancy (TMR) shows that coarse-grain strategies might increase the reliability of the overall SFUs under feasible overhead costs.

Funder

National Resilience and Recovery Plan (PNRR) through the National Center for HPC, Big Data and Quantum Computing.

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3