Abstract
AbstractFor a set L of positive integers, a set system $${\mathcal F}\subseteq 2^{[n]}$$
F
⊆
2
[
n
]
is said to be L-close Sperner, if for any pair F, G of distinct sets in $${\mathcal F}$$
F
the skew distance $$sd(F,G)=\min \{|F\setminus G|,|G\setminus F|\}$$
s
d
(
F
,
G
)
=
min
{
|
F
\
G
|
,
|
G
\
F
|
}
belongs to L. We reprove an extremal result of Boros, Gurvich, and Milanič on the maximum size of L-close Sperner set systems for $$L=\{1\}$$
L
=
{
1
}
, generalize it to $$|L|=1$$
|
L
|
=
1
, and obtain slightly weaker bounds for arbitrary L. We also consider the problem when L might include 0 and reprove a theorem of Frankl, Füredi, and Pach on the size of largest set systems with all skew distances belonging to $$L=\{0,1\}$$
L
=
{
0
,
1
}
.
Funder
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Ministry of Education and Science of the Russian Federation
ELKH Alfréd Rényi Institute of Mathematics
Publisher
Springer Science and Business Media LLC
Subject
Discrete Mathematics and Combinatorics,Theoretical Computer Science
Reference13 articles.
1. Alon, N., Babai, L., Suzuki, M.: Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type intersection theorems. J. Comb. Theory Ser. A 58(2), 165–180 (1991)
2. Babai, L., Frankl, P.: Linear algebra methods in combinatorics: with applications to geometry and computer science. Department of Computer Science, University of Chicago (1992)
3. Blokhuis, A.: A new upper bound for the cardinality of 2-distance sets in Euclidean space. Ann. Discrete Math. 20, 65–66 (1984)
4. Boros, E., Gurvich, V., Milanič, M.: Characterizing and decomposing classes of threshold, split, and bipartite graphs via 1-sperner hypergraphs. J. Graph Theory. https://doi.org/10.1002/jgt.22529. arXiv:1805.03405
5. Boros, E., Gurvich, V., Milanič, M.: Decomposing 1-sperner hypergraphs. Electron. J. Comb. 26(3), 3.18 (2019)