Energy load forecasting model based on deep neural networks for smart grids
Author:
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Strategy and Management,Safety, Risk, Reliability and Quality
Link
http://link.springer.com/content/pdf/10.1007/s13198-019-00884-9.pdf
Reference25 articles.
1. 5_algorithms_to_train_a_neural_network (2019) @ www.neuraldesigner.com
2. Almalaq A, Edwards G (2017) A review of deep learning methods applied on load forecasting. In: 2017 16th IEEE international conference on machine learning and applications (ICMLA), 2017, pp 511–516
3. Anvari Moghaddam A, Seifi AR (2011) Study of forecasting renewable energies in smart grids using linear predictive filters and neural networks. IET Renew Power Gener 5(6):470–480
4. Çavdar IH, Faryad V (2018) New design of a supervised energy disaggregation model based on the deep neural network for a smart grid. Energies 11(1):213
5. Chen K, Chen K, Wang Q, He Z, Hu J, He J (2018) Short-term load forecasting with deep residual networks. IEEE Trans Smart Grid. https://doi.org/10.1109/tsg.2018.2844307
Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advances in Deep Learning Techniques for Short-term Energy Load Forecasting Applications: A Review;Archives of Computational Methods in Engineering;2024-06-26
2. Improvement of Smart Grid Stability Based on Artificial Intelligence with Fusion Methods;Symmetry;2024-04-10
3. Predictive models for short-term load forecasting in the UK’s electrical grid;PLOS ONE;2024-04-04
4. A data decomposition and attention mechanism-based hybrid approach for electricity load forecasting;Complex & Intelligent Systems;2024-03-02
5. Electrical Load Prediction by an Improved Long Short-Term Memory Based on Variable Dimension Reduction;Lecture Notes in Electrical Engineering;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3