Semidefinite programming hierarchies for constrained bilinear optimization

Author:

Berta MarioORCID,Borderi FrancescoORCID,Fawzi OmarORCID,Scholz Volkher B.ORCID

Abstract

AbstractWe give asymptotically converging semidefinite programming hierarchies of outer bounds on bilinear programs of the form $${\mathrm {Tr}}\big [H(D\otimes E)\big ]$$ Tr [ H ( D E ) ] , maximized with respect to semidefinite constraints on D and E. Applied to the problem of approximate error correction in quantum information theory, this gives hierarchies of efficiently computable outer bounds on the success probability of approximate quantum error correction codes in any dimension. The first level of our hierarchies corresponds to a previously studied relaxation (Leung and Matthews in IEEE Trans Inf Theory 61(8):4486, 2015) and positive partial transpose constraints can be added to give a sufficient criterion for the exact convergence at a given level of the hierarchy. To quantify the worst case convergence speed of our sum-of-squares hierarchies, we derive novel quantum de Finetti theorems that allow imposing linear constraints on the approximating state. In particular, we give finite de Finetti theorems for quantum channels, quantifying closeness to the convex hull of product channels as well as closeness to local operations and classical forward communication assisted channels. As a special case this constitutes a finite version of Fuchs-Schack-Scudo’s asymptotic de Finetti theorem for quantum channels. Finally, our proof methods answer a question of Brandão and Harrow (Proceedings of the forty-fourth annual ACM symposium on theory of computing, STOC’12, p 307, 2012) by improving the approximation factor of de Finetti theorems with no symmetry from $$O(d^{k/2})$$ O ( d k / 2 ) to $${\mathrm {poly}}(d,k)$$ poly ( d , k ) , where d denotes local dimension and k the number of copies.

Funder

Agence Nationale de la Recherche

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3