Abstract
AbstractFor polyhedral constrained optimization problems and a feasible point $$\textbf{x}$$
x
, it is shown that the projection of the negative gradient on the tangent cone, denoted $$\nabla _\varOmega f(\textbf{x})$$
∇
Ω
f
(
x
)
, has an orthogonal decomposition of the form $$\varvec{\beta }(\textbf{x}) + \varvec{\varphi }(\textbf{x})$$
β
(
x
)
+
φ
(
x
)
. At a stationary point, $$\nabla _\varOmega f(\textbf{x}) = \textbf{0}$$
∇
Ω
f
(
x
)
=
0
so $$\Vert \nabla _\varOmega f(\textbf{x})\Vert $$
‖
∇
Ω
f
(
x
)
‖
reflects the distance to a stationary point. Away from a stationary point, $$\Vert \varvec{\beta }(\textbf{x})\Vert $$
‖
β
(
x
)
‖
and $$\Vert \varvec{\varphi }(\textbf{x})\Vert $$
‖
φ
(
x
)
‖
measure different aspects of optimality since $$\varvec{\beta }(\textbf{x})$$
β
(
x
)
only vanishes when the KKT multipliers at $$\textbf{x}$$
x
have the correct sign, while $$\varvec{\varphi }(\textbf{x})$$
φ
(
x
)
only vanishes when $$\textbf{x}$$
x
is a stationary point in the active manifold. As an application of the theory, an active set algorithm is developed for convex quadratic programs which adapts the flow of the algorithm based on a comparison between $$\Vert \varvec{\beta }(\textbf{x})\Vert $$
‖
β
(
x
)
‖
and $$\Vert \varvec{\varphi }(\textbf{x})\Vert $$
‖
φ
(
x
)
‖
.
Funder
National Science Foundation
Office of Naval Research Global
Publisher
Springer Science and Business Media LLC
Subject
General Mathematics,Software
Reference39 articles.
1. Andretta, M., Birgin, E.G., Martínez, J.M.: Partial spectral projected gradient method with active-set strategy for linearly constrained optimization. Numer. Algorithms 53(1), 23–52 (2010)
2. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)
3. Bielschowsky, R.H., Friedlander, A., Gomes, F.A.M., Martínez, J.M.: An adaptive algorithm for bound constrained quadratic minimization. Investig. Ope. 7, 67–102 (1997)
4. Bonettini, S., Prato, M.: New convergence results for the scaled gradient projection method. Inverse Problems 31(9), 095008 (2015)
5. Bonettini, S., Zanella, R., Zanni, L.: A scaled gradient projection method for constrained image deblurring. Inverse Problems 25(1), 015002 (2009)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Projection free methods on product domains;Computational Optimization and Applications;2024-06-04