Abstract
AbstractThis paper investigates the potential of Lagrangian relaxations to generate quality bounds on non-dominated images of multiobjective integer programs (MOIPs). Under some conditions on the relaxed constraints, we show that a set of Lagrangian relaxations can provide bounds that coincide with every bound generated by the convex hull relaxation. We also provide a guarantee of the relative quality of the Lagrangian bound at unsupported solutions. These results imply that, if the relaxed feasible region is bounded, some Lagrangian bounds will be strictly better than some convex hull bounds. We demonstrate that there exist Lagrangian multipliers which are sparse, satisfy a complementary slackness property, and generate tight relaxations at supported solutions. However, if all constraints are dualized, a relaxation can never be tight at an unsupported solution. These results characterize the strength of the Lagrangian dual at efficient solutions of an MOIP.
Funder
Office of Naval Research
Division of Civil, Mechanical and Manufacturing Innovation
Publisher
Springer Science and Business Media LLC