Exploiting ideal-sparsity in the generalized moment problem with application to matrix factorization ranks

Author:

Korda Milan,Laurent MoniqueORCID,Magron Victor,Steenkamp Andries

Abstract

AbstractWe explore a new type of sparsity for the generalized moment problem (GMP) that we call ideal-sparsity. In this setting, one optimizes over a measure restricted to be supported on the variety of an ideal generated by quadratic bilinear monomials. We show that this restriction enables an equivalent sparse reformulation of the GMP, where the single (high dimensional) measure variable is replaced by several (lower dimensional) measure variables supported on the maximal cliques of the graph corresponding to the quadratic bilinear constraints. We explore the resulting hierarchies of moment-based relaxations for the original dense formulation of GMP and this new, equivalent ideal-sparse reformulation, when applied to the problem of bounding nonnegative- and completely positive matrix factorization ranks. We show that the ideal-sparse hierarchies provide bounds that are at least as good (and often tighter) as those obtained from the dense hierarchy. This is in sharp contrast to the situation when exploiting correlative sparsity, as is most common in the literature, where the resulting bounds are weaker than the dense bounds. Moreover, while correlative sparsity requires the underlying graph to be chordal, no such assumption is needed for ideal-sparsity. Numerical results show that the ideal-sparse bounds are often tighter and much faster to compute than their dense analogs.

Funder

H2020 Marie Sklodowska-Curie Actions

Czech Science Foundation

ANITI PIA3

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polynomial Optimization Over Unions of Sets;Vietnam Journal of Mathematics;2024-07-24

2. Matrix Factorization Ranks Via Polynomial Optimization;Polynomial Optimization, Moments, and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3