Riemannian Optimization via Frank-Wolfe Methods

Author:

Weber MelanieORCID,Sra Suvrit

Abstract

AbstractWe study projection-free methods for constrained Riemannian optimization. In particular, we propose a Riemannian Frank-Wolfe (RFW) method that handles constraints directly, in contrast to prior methods that rely on (potentially costly) projections. We analyze non-asymptotic convergence rates of RFW to an optimum for geodesically convex problems, and to a critical point for nonconvex objectives. We also present a practical setting under which RFW can attain a linear convergence rate. As a concrete example, we specialize RFW to the manifold of positive definite matrices and apply it to two tasks: (i) computing the matrix geometric mean (Riemannian centroid); and (ii) computing the Bures-Wasserstein barycenter. Both tasks involve geodesically convex interval constraints, for which we show that the Riemannian “linear” oracle required by RFW admits a closed form solution; this result may be of independent interest. We complement our theoretical results with an empirical comparison of RFW against state-of-the-art Riemannian optimization methods, and observe that RFW performs competitively on the task of computing Riemannian centroids.

Funder

National Science Foundation

Princeton University

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

Reference68 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Practical gradient and conjugate gradient methods on flag manifolds;Computational Optimization and Applications;2024-03-19

2. The Difference of Convex Algorithm on Hadamard Manifolds;Journal of Optimization Theory and Applications;2024-02-26

3. Linear Programming on the Stiefel Manifold;SIAM Journal on Optimization;2024-02-15

4. Interior-point methods on manifolds: theory and applications;2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06

5. Riemannian Optimization via Frank-Wolfe Methods;Mathematical Programming;2022-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3