1. Agarwal, A., Bartlett, P.L., Ravikumar, P., Wainwright, M.J.: Information-theoretic lower bounds on the oracle complexity of convex optimization. IEEE Trans. Inf. Theory 58(5), 3235–3249 (2012)
2. Agarwal, N., Allen-Zhu, Z., Bullins, B., Hazan, E., Ma, T.: Finding approximate local minima faster than gradient descent. In: Proceedings of the Forty-Ninth Annual ACM Symposium on the Theory of Computing (2017)
3. Arjevani, Y., Shalev-Shwartz, S., Shamir, O.: On lower and upper bounds in smooth and strongly convex optimization. J. Mach. Learn. Res. 17(126), 1–51 (2016)
4. Arjevani, Y., Shamir, O., Shiff, R.: Oracle complexity of second-order methods for smooth convex optimization (2017).
arXiv:1705.07260
[math.OC]
5. Ball, K.: An elementary introduction to modern convex geometry. In: Levy, S. (ed.) Flavors of Geometry, pp. 1–58. MSRI Publications, Cambridge (1997)